Skip to main content
Log in

CdSe/ZnS Quantum Dots Conjugated with a Fluorescein Derivative: a FRET-based pH Sensor for Physiological Alkaline Conditions

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Dual pH-dependent fluorescence peaks from a semiconductor quantum dot (QD) and a pH-dependent fluorescent dye can be measured by irradiating with a single wavelength light, and the pH can be estimated from the ratio of the fluorescent intensity of the two peaks. In this work, ratiometric pH sensing was achieved in an aqueous environment by a fluorescent CdSe/ZnS QD appended with a pH-sensitive organic dye, based on fluorescence resonance energy transfer (FRET). By functionalizing the CdSe/ZnS QD with 5-(and 6)-carboxynaphthofluorescein succinimidyl ester as a pH-dependent fluorescent dye, we succeeded in fabricating sensitive nanocomplexes with a linear response to a broad range of physiological pH levels (7.5 - 9.5) when excited at 450 nm. We found that a purification process is important for increasing the high-fluorescence intensity ratio of a ratiometric fluorescence pH-sensor, and the fluorescence intensity ratio was improved up to 1.0 at pH 8.0 after the purification process to remove unreacted CdSe/ZnS QDs even though the fluorescence of the dye could not be observed without the purification process. The fluorescence intensity ratio corresponds to the fluorescence intensity of the dye, and this fluorescent dye exhibited pH-dependent fluorescence intensity changes. These facts indicate that the fluorescence intensity ratio linearly increased with increasing pH value of the buffer solution containing the QD and the dye. The FRET efficiencies changed from 0.3 (pH 7.5) to 6.2 (pH 9.5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Hu, L.-L. Hu, M.-L. Chen, and J.-H. Wang, Biosens. Bioelectron., 2013, 49, 499.

    Article  CAS  PubMed  Google Scholar 

  2. I. L. Medintz and H. Mattoussi, Phys. Chem. Chem. Phys., 2009, 11, 17.

    Article  CAS  PubMed  Google Scholar 

  3. E. Petryayeva, W. R. Algar, and U. Krull, Langmuir, 2013, 29, 977.

  4. J. M. Feugang, R. C. Youngblood, J. M. Greene, A. S. Fahad, W. A. Monroe, S. T. Willard, and P. J. Ryan, Nanobiotechnology., 2012, 10, 45.

    Article  CAS  Google Scholar 

  5. M. A. Walling, J. A. Novak, and J. R. Shepard, Int. J. Mol. Sci.. 2009, 10, 441.

  6. P. Reiss, M. Protière, and L. Li, Small, 2009, 5, 154.

    Article  CAS  PubMed  Google Scholar 

  7. O. I. Mićić, H. M. Cheong, H. Fu, A. Zunger, J. R. Sprague, A. Mascarenhas, and A. J. Nozik, J. Phys. Chem. B, 1997, 101, 4904.

    Article  Google Scholar 

  8. H. Chander, Mater. Sci. Eng., R, 2005, 49, 113.

    Article  Google Scholar 

  9. C. J. Murphy, Anal. Chem., 2002, 74, 520A.

    Article  CAS  PubMed  Google Scholar 

  10. Z. Zheley, H. Ohba, R. Bakalova, R. Jose, S. Fukuoka, T. Nagase, M. Ishikawa, and Y. Baba, Chem. Commun., 2005, 1980.

  11. H. Arya, Z. Kaul, R. Wadhwa, K. Taira, T. Hirano, and S. C. Kaul, Biochem. Biophys. Res. Commun., 2005, 329, 1173.

    Article  CAS  PubMed  Google Scholar 

  12. M. Han, X. Gao, J. Z. Su, and S. Nie, Nat. Biotechnol., 2001, 19, 631.

    Article  CAS  PubMed  Google Scholar 

  13. J. M. Costa-Fernández, R. Pereiro, and A. Sanz-Medel, TrAC, Trends Anal. Chem., 2006, 25, 207.

    Article  Google Scholar 

  14. E. R. Goldman, I. L. Medintz, J. L. Whitley, A. Hayhurst, R. Clapp, H. T. Uyeda, J. R. Deschamps, M. E. Lassman, and M. Mattoussi, J. Am. Chem. Soc., 2006, 127, 6744.

    Article  Google Scholar 

  15. P. Reiss, M. Protiere, and L. Li, Small, 2009, 5, 154.

    Article  CAS  PubMed  Google Scholar 

  16. C. Cheng and H. Yan, Physica E, 2009, 41, 828.

    Article  CAS  Google Scholar 

  17. S. M. Kim and H.-S. Yang, Curr. Appl. Phys., 2011, 11, 1056.

    Article  Google Scholar 

  18. M. Tomasulo, I. Yildiz, S. L. Kaanumalle, and F. M. Raymo, Lamgmuir, 2006, 22, 510284.

    Article  Google Scholar 

  19. W. W. Yu, E. Chang, R. Drezek, and V. L. Colvin, Biochem. Biophys. Res. Commun., 2006, 348, 781.

    Article  CAS  PubMed  Google Scholar 

  20. C. Li, M. Ando, H. Enomoto, and N. Murase, J. Phys. Chem. C, 2008, 112, 20190.

    Article  CAS  Google Scholar 

  21. M. Tomasulo, I. Yildiz, S. L. Kaanumaalle, and F. M. Raymo, Langmuir, 2006, 22, 10284.

    Article  CAS  PubMed  Google Scholar 

  22. J. F. Callan, R. C. Mulrooney, S. Kamila, and B. McCaughan, J. Fluoresc., 2008, 18, 527.

    Article  CAS  PubMed  Google Scholar 

  23. J. Liu, Z. Diwu and W.-Y. Leung, Bioorg. Med. Chem. Lett., 2001, 11, 2903.

    Article  CAS  PubMed  Google Scholar 

  24. Z. Xianfeng, S. Fengyu, L. Hongguang, S.-W. Patti, and T. Yanqing, Biomaterials, 2012, 33, 171.

    Article  Google Scholar 

  25. M. Suzuki, Y. Husimi, H. Komatsu, K. Suzuki, and K. T. Douglas, J. Am. Chem. Soc., 2008, 130, 5720.

    Article  CAS  PubMed  Google Scholar 

  26. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, J. Phys. D: Appl. Phys., 2005, 38, 2543.

    Article  CAS  Google Scholar 

  27. A. Krishnaswamy and G. V. G. Baranoski, Eurographics, 2004, 23, 321.

    Google Scholar 

  28. P. T. Snee, R. C. Somers, G. Nair, J. P. Zimmer, M. G. Bawendi, and D. G. Nocera, J. Am. Chem. Soc., 2006, 128, 13320.

    Article  CAS  PubMed  Google Scholar 

  29. T. Jin, A. Sasaki, M. Kinjo, and J. Miyazaki, Chem. Commun., 2010, 46, 2408.

    Article  CAS  Google Scholar 

  30. R. Sjöback, J. Nygren, and M. Kubista, Spectrochim. Acta, Part A, 1995, 51, L7.

    Article  Google Scholar 

  31. H. Cheung, Top. Fluoresc. Spectrosc., 1991, 3, 127.

    Google Scholar 

  32. P. Wu and L. Brand, Anal. Biochem., 1994, 218, 1.

    Article  CAS  PubMed  Google Scholar 

  33. M . Elagovan, R. N. Day, and A. Periasamy, J. Microsc., 2002, 205, 3.

  34. Y. Hiruta, N. Yoshizawa, D. Citterio, and K. Suzuki, Anal. Chem., 2012, 84, 10650.

    Article  CAS  PubMed  Google Scholar 

  35. M. F. Frasco and N. Chaniotakis, Sensors, 2009, 9, 7266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. J. E. Ghadiali, B. E. Cohen, and M. M. Stevens, ACS Nano, 2010, 4, 4915.

    Article  CAS  PubMed  Google Scholar 

  37. J. Ostermann, J.-P. Merkl, S. Flessau, C. Wolter, A. Kornowksi, C. Schmidtke, A. Pietsch, H. Kloust, A. Feld, and H. Weller, ACS Nano, 2013, 9156.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Fukuda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurabayashi, T., Funaki, N., Fukuda, T. et al. CdSe/ZnS Quantum Dots Conjugated with a Fluorescein Derivative: a FRET-based pH Sensor for Physiological Alkaline Conditions. ANAL. SCI. 30, 545–550 (2014). https://doi.org/10.2116/analsci.30.545

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.30.545

Keywords