Skip to main content
Log in

Nutritional evaluation of phosphorylated pumpkin seed (Cucurbita moschata) protein concentrate in silver catfish Rhamdia quelen (Quoy and Gaimard, 1824)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

An 8-week feeding trial was conducted to evaluate the effect of replacing fish meal with pumpkin seed meal (PSM) or phosphorylated protein concentrate of pumpkin seed meal (PPCPS) on growth and metabolic responses of silver catfish. Five isonitrogenous and isocaloric diets were formulated. Control diet contained fish meal as the main protein source. The treatment groups contained 25 and 50 % of either PSM or PPCPS protein replaced the fishmeal protein. A total of 400 silver catfish, with initial mean weight of 24 ± 0.46 g, were distributed into 20 tanks. For data four orthogonal contrasts were applied: control diet versus PSM diets; control diets versus PPCPS diets; control versus other diets; PSM diets versus PPCPS diets. The results indicated that the fish fed PSM diets had lower weight gain when compared to either control diet or PPCPS. The PPCPS do not affect growth and protein efficiency ratio. Lower albumin contents were found for the control diet fish for the contrasts control diet versus PPCPS diet and control diet versus other diets. The hepatic ALAT enzyme activity was higher in the fish fed the control diet (P < 0.05). The hepatic ALP was most active in fish that received the PPCPS diets, when comparing control diet versus PPCPS diets and control diet versus other diets. The hepatosomatic index was higher for fish fed the PPCPS. Our results indicated that PPCPS presents relevant nutritional quality for fish and can replace the fish meal protein up to 50 % without affecting growth, PER and intermediate metabolites in silver catfish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • AOAC Association of Analytical Chemists (2000) Official methods of analysis of AOAC international, Gaisthersburg, 17 edn, v. I e II, 2000

  • Bacila M (2003) Bioquímica Veterinária.; São Paulo. Editora Varela livros, 2° edição

  • Baldisserotto B (2004) Biologia do jundiá In: Baldisserotto B, Radünz Neto J (eds) Criação do jundiá. UFSM, Santa Maria, pp 67–72

  • Baldisserotto B, Silva LVF (2004) Qualidade da água. In: Baldisserotto B, Radünz Neto J (eds) Criação do jundiá. UFSM, Santa Maria, pp 73–94

  • Bidinotto PM, Moraes G, Souza RHS (1998) Hepatic glycogen and glucose in eight tropical freshwater teleost fish: a procedure for field determinations of micro samples. Boletim Técnico do CEPTA Pirassununga 10:53–60

    Google Scholar 

  • Bradford MMA (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Brinker A, Reiter R (2011) Fish meal replacement by plant proteins substitution and guar gum addition in trout feed, Part 1: effects on feed utilization and fish quality. Aquaculture 310:350–360. doi:10.1016/j.aquaculture.2010.09.041

    Article  CAS  Google Scholar 

  • Carter CG, Houlihan DF (2001) Protein synthesis. In Fish Physiology Vol. 20 Nitrogen Excretion (ed. P. A. Wright and P. M. Anderson), London: Academic Press. Fish meal replacement by plant proteins substitution and guar gum addition in trout feed, Part 1. pp 31–75

  • Debnath D, Pal AK, Sahu NP, Yengkokpam S, Baruah K, Choudhury D, Venkateshwarlu G (2007) Digestive enzymes and metabolic profile of Labeo rohita fingerlings fed diets with different crude protein levels. Comp Biochem Physiol Part B 146:107–114. doi:10.1016/j.cbpb.2006.09.008

    Article  CAS  Google Scholar 

  • Del-Vechio G, Corrêa AD, Abreu CMP, Santos CD (2005) Efeito do tratamento térmico em sementes de abóboras (Cucurbita spp.) sobre os níveis de fatores antinutricionais e/ou tóxicos. Ciência e Agrotecnologia 29(2):369–376. doi:10.1590/S1413-70542005000200014

    Article  CAS  Google Scholar 

  • Dias, Abreu CMP, Silvestre MPC, Schawn RF (2010) In vitro protein digestibility of enzymatically pre-treated bean (Phaseolus vulgaris L.) flour using commercial protease and Bacillus sp. protease. Ciência e Tecnologia de Alimentos, Campinas 30:94–99. doi:10.1590/S0101-20612010005000010

    Article  Google Scholar 

  • Ellinger RH (1972) Phosphates as food ingredients. The Chemical Rubber Co. Press, Cleveland, Ohio, pp 19–25

    Google Scholar 

  • Enami HR (2011) A review of using canola/rapeseed meal in aquaculture feeding. J Fish Aquat Sci 6:22–36. doi:10.3923/JFAS.2011.22.36

    Article  CAS  Google Scholar 

  • Fennema OR (2010) Química de alimentos de Fennema 4ª ed. – Editora Artmed

  • Food and Agriculture Organization of the United Nations. FAO Fisheries (2012) Use of fishmeal and fish oil in aquafeeds. Circular nº 975 Disponível em: http://www.fao.org/3/a-y3781e.pdf. Acessed 26 Nov 2014

  • Francis G, Makkar HPS, Becker K (2001) Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199:197–227. doi:10.1016/S0044-8486(01)00526-9

    Article  CAS  Google Scholar 

  • Gómez-Requeni P, Mingarro M, Calduch-Giner JA, Médale F, Martin SAM, Houliha DF, Kaushik V, Pérez-Sánchez J (2004) Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture 232:493–510. doi:10.1016/S0044-8486(03)00532-5

    Article  Google Scholar 

  • Hansen AC, Rosenlund G, Karlsen O, Koppe W, Hemre GI (2007) Total replacement of fish meal with plant proteins in diets for Atlantic cod (Gadus morhua L.) I—effects on growth and protein retention. Aquaculture 272:599–611. doi:10.1016/j.aquaculture.2007.08.034

    Article  CAS  Google Scholar 

  • Hardy R (2010) Utilization of plant in fish diets: effects of global demand and supplies of fishmeal. Aquac Res 41:770–776. doi:10.1111/j.1365-2109.2009.02349.x

    Article  CAS  Google Scholar 

  • Jobling MA (1983) A short review and critic of methodology used in fish growth and nutrition studies. J Fish Biol 23:685–703. doi:10.1111/j.1095-8649.1983.tb02946.x

    Article  Google Scholar 

  • Kim MY, Kim EU, Kim YN, Choi C, Lee BH (2012) Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutr Res Pract 6(1):21–27. doi:10.4162/nrp.2012.6.1.21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kramer JW, Hoffmann WE (1997) Clinical enzymology. In: Kaneko JJ, Harvey JW, Bruss ML (eds) Clinical biochemistry of domestic animals. 5th edn. Academic Press, San Diego, cap.12, pp 303–325

  • Larsen J, Roney JM (2013) Farmed fish production overtakes beef, EARTH POLICY INSTITUTE™. http://www.earth-policy.org/plan_b_updates/2013/update114. Accessed 28 Dec 2014

  • Lee J, Choi IC, Kim KT, Cho SH, Yoo JY (2012) Response of dietary substitution of fishmeal with various protein sources on growth, body composition and blood chemistry of olive flounder (Paralichthys olivaceus, Temminck & Schlegel, 1846). Fish Physiol Biochem 38:735–744. doi:10.1007/s10695-011-9555-3

    Article  CAS  PubMed  Google Scholar 

  • Mariod AA, Fathy SF, Ismail M (2010) Preparation and characterisation of protein concentrates from defatted kenaf seed. Food Chem 123:747–752. doi:10.1016/j.foodchem.2010.05.045

    Article  CAS  Google Scholar 

  • Marks AD, Smith C, Lieberman M (2007) Basic medical biochemistry: a clinical approach, 2nd edn. Colleen

  • Matheis G, Michael HP, Robert EF, John RW (1983) Phosphorylation of casein and lysozyme by phosphorus oxychloride. J Agric Food Chem 31(2):379–387. doi:10.1021/jf00116a049

    Article  CAS  PubMed  Google Scholar 

  • Mauron J (1973) The analysis of food proteins: amino acid composition and nutritive value. In: Porter JWG, Rolls BA (eds) Proteins in human nutrition. Academic Press, London, pp 139–154

    Google Scholar 

  • Metón I, Mediavilla D, Caseras A, Canto E, Fernández E, Baanantet IV (1999) Effect of diet composition and ration size on key enzyme activities of glycolysis–gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of gilthead sea bream (Sparus aurata). Br J Nutr 82:223–232. doi:10.1017/S0007114599001403

    PubMed  Google Scholar 

  • Meyer G, Fracalossi DM (2004) Protein requirement of jundia fingerlings, Rhamdia quelen, at two dietary energy concentrations. Aquaculture 240:331–343. doi:10.1016/j.aquaculture.2004.01.034

    Article  CAS  Google Scholar 

  • Montes-Girao PJ, Fracalossi DM (2006) Dietary lysine requirement as basis to estimate the essential dietary amino acid profile for jundiá, Rhamdia quelen. J World Aquac Soc 37:388–396. doi:10.1111/j.1749-7345.2006.00052.x

    Article  Google Scholar 

  • MPA (2010) Ministério Da Pesca E Aquicultura. Boletim Estatístico da Pesca e Aquicultura Brasil. http://www.mpa.gov.br

  • NRC (2011) National Research Council, Nutrient Requirements of Fish and Shrimp, Committee on Animal Nutrition. National Academy Press, Washington

    Google Scholar 

  • Rahimnejad S, Bang IC, Park JY, Sade A, Choi J, Lee SM (2015) Effects of dietary protein and lipid levels on growth performance, feed utilization and body composition of juvenile hybrid grouper, Epinephelus fuscoguttatus × E. lanceolatus. Aquaculture 446:283–289. doi:10.1016/j.aquaculture.2015.05.019

    Article  CAS  Google Scholar 

  • Salhi M, Bessonart M, Chediak G, Bellagamba M, Carnevia D (2004) Growth, feed utilization, and body composition of black catfish, Rhamdia quelen, fry fed diets containing different protein and energy levels. Aquaculture 231:435–444. doi:10.1016/j.aquaculture.2003.08.006

    Article  Google Scholar 

  • Silfvergrip AMC (1996) A systematic revision of the neotropical catfish genus Rhamdia (Teleostei, Pimelodidae). PhD Thesis, Departament of zoology, Stockholm Unversity and Departament of Vertebrate Zoology, Stockholm, Sweden

  • Smith AK, Johnson VL, Beckel AC (1946) Linseed proteins alkali dispersion and acid precipitation. Ind Eng Chem 38:353–356. doi:10.1021/ie50435a030

    Article  CAS  Google Scholar 

  • Spies JR (1957) Colorimetric procedures for amino acids. Method Enzymol 3:467–477

    Article  Google Scholar 

  • Tusche K, Arning S, Wuertz S, Susenbeth A, Schulz C (2012) Wheat gluten and potato protein concentrate - promising protein sources for organic farming of rainbow trout (Oncorhynchus mykiss). Aquaculture 344–349(4):120–125. doi:10.1016/j.aquaculture.2012.03.009

    Article  Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA (1991) Symposium: carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci Champaign 74:3583–3597

    Article  Google Scholar 

  • Wang JT, Liu YJ, Tian LX, Mai KS, Du ZY, Wang Y, Yang HJ (2013) Effects of dietary protein and lipid levels on growth, feed utilization and body composition in Pseudobagrus ussuriensis fingerlings. Aquac Nutr 19(3):390–398. doi:10.1016/j.aquaculture.2005.04.038

    Article  CAS  Google Scholar 

  • Watson AM, Kissil GW, Barrows FT, Place AR (2012) Developing a plant-based diet for cobia Rachycentron canadum. Int Aquafeed 15:34–38

    Google Scholar 

  • Yamada EA, Alvim ID, Santucci MCC, Sgarbieri VC (2003) Composição centesimal e valor proteico de levedura residual da fermentação etanolica e de seus derivados. Revista Nutrição, Campinas 16(4):423–432. doi:10.1590/S1415-52732003000400006

    CAS  Google Scholar 

  • Yamamoto T, Unuma T, Akiyama T (2000) The influence of dietary protein and fat levels on tissue free amino acid levels of fingerling rainbow trout (Oncorhynchus mykiss). Aquaculture 180:353–372. doi:10.1016/S0044-8486(99)00277-X

    Article  Google Scholar 

  • Younis YM, Ghirmay S, Al-Shihry SS (2000) African Cucurbita pepo L. properties of seed and variability in fatty acid composition of seed oil. Phytochemistry 54(1):71–75. doi:10.1016/S0031-9422(99)00610-X

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—National Counsel of Technological and Scientific Development) for the research yield scholarship (Leila Picolli da Silva), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—Coordination of Improvement of Higher Education) for the Doctoral degree scholarship (Naglezi de Menezes Lovatto) and Ritter Alimentos company for donating the pumpkin seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naglezi de Menezes Lovatto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lovatto, N.M., Goulart, F.R., de Freitas, S.T. et al. Nutritional evaluation of phosphorylated pumpkin seed (Cucurbita moschata) protein concentrate in silver catfish Rhamdia quelen (Quoy and Gaimard, 1824). Fish Physiol Biochem 41, 1557–1567 (2015). https://doi.org/10.1007/s10695-015-0107-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0107-0

Keywords