Skip to main content
Log in

Comparison of the bone modeling effects caused by curved and straight nickel–titanium intramedullary nails

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Nitinol (NiTi) shape memory metal alloy makes it possible to prepare functional implants. A curved intramedullary NiTi nail has been shown to cause bending of the bone, bone thickening, increase in cortical area, and reduction in bone longitudinal growth. The purpose of the present study was to find out whether these changes are caused by the bending force of the curved nail or by the intramedullary nailing itself. Pre-shaped intramedullary NiTi nails were implanted in the cooled martensitic form into the medullary cavity of the right femur in 12 rats, where they started to restore their austenitic form, causing a bending force. Straight nails were used as controls in another 12 rats. After 12 weeks, the operated femurs were compared with their non-operated contralateral counterparts and the differences were compared between the groups. Anteroposterior radiographs demonstrated bone bowing only in the curved nail group. Retardation of longitudinal growth was observed in both groups, showing that the growth effect seems to be due to the intramedullary nailing itself. Increase in bone cross-sectional area and cortical thickness were found in both groups. However, this increase was more evident with the curved nail, indicating that the bending force of the functional nail seems to induce these changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. J. RyhÄnen, Minim. Invasive. Ther. Allied Technol. 9 (2000) 99.

    Google Scholar 

  2. A. Kapanen, J. Ilvesaro, A. Danilov, J. RyhÄnen, P. Lehenkari and J. Tuukkanen, Biomaterials 23 (2002) 645.

    Google Scholar 

  3. A. Kapanen, J. RyhÄnen, A. Danilov and J. Tuukkanen, ibid. 22 (2001) 2475.

    Google Scholar 

  4. J. RyhÄnen, M. Kallioinen, W. Serlo, P. PerÄmÄki, J. Junila, P. Sandvik, E. NiemelÄ and J. Tuukkanen, J. Biomed. Mater. Res. 47 (1999) 472.

    Google Scholar 

  5. M. Assad, N. Lemieux, C. H. Rivard and L. H. Yahia, Biomed. Mater. Eng. 9 (1999) 1.

    Google Scholar 

  6. D. J. Wever, A. G. Veldhuizen, M. M. Sanders, J. M. Schakenraad and J. R. Van Horn, Biomaterials 18 (1997) 1115.

    Google Scholar 

  7. J. O. Sanders, A. E. Sanders, R. More and R. B. Ashman, Spine 18 (1993) 1640.

    Google Scholar 

  8. D. J. Wever, J. A. Elstrodt, A. G. Veldhuizen and J. R. V. Horn, Eur. Spine J. 11 (2002) 100.

    Google Scholar 

  9. J. L. Wolff, in “The Law of Bone Remodeling, Das Gesetz der Transformation der Knochen, 1892”, translated by P. Maquet and R. Furlong (Springer, Berlin, 1986).

    Google Scholar 

  10. T. A. Einhorn, Calcif. Tissue Int. 51 (1992) 333.

    Google Scholar 

  11. D. M. Raab-Cullen, M. P. Akhter, D. B. Kimmel and R. R. Recker, J. Bone Miner. Res. 9 (1994) 1143.

    Google Scholar 

  12. Y. Hsieh and R. T. Turner, ibid. 16 (2001) 918.

    Google Scholar 

  13. H. Weinans, R. Huiskes, B. Van Rietbergen, D. R. Sumner, T. M. Turner and J. O. Galante, J. Orthop. Res. 11 (1993) 500.

    Google Scholar 

  14. X. D. Guo and S. C. Cowin, J. Biomech. 25 (1992) 645.

    Google Scholar 

  15. D. R. Carter and T. E. Orr, J. Bone Miner. Res. 7(Suppl 2) (1992) S389.

    Google Scholar 

  16. S. Kujala, J. RyhÄnen, T. JÄmsÄ, A. Danilov, J. Saaranen, A. Pramila and J. Tuukkanen, Biomaterials 23 (2002) 2535.

    Google Scholar 

  17. I. Bjerkreim and Ø. LangÅrd, Acta Orthop. Scand. 54 (1983) 363.

    Google Scholar 

  18. K. Indrekvam, N. R. Gjerdet, L. B. EngesÆter and N. Langeland, ibid. 62 (1991) 582.

    Google Scholar 

  19. O. S. Husby, K. Indrekvam, A. O. MØlster, N. R. Gjerdet and N. Langeland, ibid. 60 (1989) 345.

    Google Scholar 

  20. O. S. Husby, N. R. Gjerdet and A. O. MØlster, ibid. 60 (1989) 349.

    Google Scholar 

  21. A. O. MØlster, Clin. Orthop. 202 (1986) 278.

    Google Scholar 

  22. W. J. Buehler and F. E. Wang, Ocean Engng. 1 (1968) 105.

    Google Scholar 

  23. L. S. Castleman, S. M. Motzkin, F. P. Alicandri and V. L. Bonawit, J. Biomed. Mater. Res. 10 (1976) 695.

    Google Scholar 

  24. F. Baumgart, G. Bensmann and J. Haasters, in “Current Concepts of Internal Fixation of Fractures” (Springer, Berlin, 1980) p. 122.

    Google Scholar 

  25. C. A. Engh, J. D. Bobyn and A. H. Glassman, J. Bone Jt. Surg. Br. 69 (1987) 45.

    Google Scholar 

  26. H. KrÖger, E. Vanninen, M. Overmyer, H. Miettinen, N. Rushton and O. Suomalainen, J. Bone Miner. Res. 12 (1997) 487.

    Google Scholar 

  27. R. Huiskes, H. Weinans and M. Dalstra, Orthopedics 12 (1989) 1255.

    Google Scholar 

  28. L. E. Lanyon, J. Bone Miner. Res. 7(Suppl 2) (1992) S369.

    Google Scholar 

  29. L. E. Lanyon and C. T. Rubin, J. Biomech. 17 (1984) 897.

    Google Scholar 

  30. T. L. JÄrvinen, P. Kannus, H. SievÄnen, P. Jolma, A. Heinonen and M. JÄrvinen, J. Bone Miner. Res. 13 (1998) 1475.

    Google Scholar 

  31. J. L. Ferretti, R. F. Capozza, N. Mondelo and J. R. Zanchetta, ibid. 8 (1993) 1389.

    Google Scholar 

  32. R. T. Turner and N. H. Bell, ibid. 1 (1986) 399.

    Google Scholar 

  33. H. A. Sofield and E. A. Millar, J. Bone Jt. Surg. Am. 41 (1959) 1371.

    Google Scholar 

  34. H. Steen and T. O. Fjeld, Clin. Orthop. 247 (1989) 297.

    Google Scholar 

  35. S. S. Yadav, J. Bone Jt. Surg. Br. 75 (1993) 962.

    Google Scholar 

  36. D. Ring, J. B. Jupiter, P. K. Labropoulos, J. J. Guggenheim, D. F. Stanitsky and D. M. Spencer, J. Bone Jt. Surg. Am. 78 (1996) 220.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kujala, S., Tuukkanen, J., Jämsä, T. et al. Comparison of the bone modeling effects caused by curved and straight nickel–titanium intramedullary nails. Journal of Materials Science: Materials in Medicine 13, 1157–1161 (2002). https://doi.org/10.1023/A:1021194005533

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021194005533

Keywords