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Preface

Recurrent Neural Networks (RNN) is one of the two broad types of artificial neural
network that allow the output from some nodes to affect subsequent input to the same
nodes. A continuous-time recurrent neural network (CTRNN) uses a system of ordinary
differential equations to define effects on incoming inputs on a neuron. We consider
CTRNN dedicated to find zeros of equations or to minimize nonlinear functions. Two
important classes of CTRNNs are known: Gradient Neural Networks (GNN) and Zhang
(or Zeroing) Neural Networks (ZNN). GNN is defined as the dynamical evolution along
gradient-descent direction of the Frobenius norm of the error matrix. Therefore, there
is a strict relationship between the design of GNN dynamic systems and nonlinear opti-
mization methods. The aim of this book is to collect the latest developments in the theory
and computation in numerical linear algebra by means of algorithms based on dynamical
system approach. Main topics included in this book are investigation of GNN dynamical
systems, their design and applications in computation of the usual matrix inverse and
generalized inverses, solving systems of linear matrix and vector equations. The dynami-
cal system approach is a powerful tool for solving many kinds of matrix algebra problems
because of:

(a) possibility to ensure a response within a predefined time-frame in real-time applica-
tions,

(b) its parallel distributed nature,

(c) convenience of hardware implementation,

(d) global convergence without conditions,

(e) in addition, dynamical system approach is applicable to online computation with
time-varying matrices.

Our primary goal is the application of dynamical system approach in numerical lin-
ear algebra, especially in computation of generalized inverses, and solving system of lin-
ear matrix equations. Considered algorithms are aimed to both time-invariant and time-
varying, complex and real matrices. Continuous-time computation has attracted a great
scientific research. In particular, there is an increasing interest in continuous-time com-
putation, where the states of the dynamical system evolve continuously. Many biological
systems, some control systems can be better described in the analog manner. The main
motivation is the goal to derive efficient models for the variety of continuous dynamical
systems which appear in the real world phenomena.

All dynamical systems have discrete-time analogies, given in the form of appropri-
ate difference equations. Main correlations between the continuous and discrete-time
algorithms are considered in this book. Many computational problems (for example,
structural analysis, electrical network analysis, weather forecasting) are based on matrix
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algorithms, such as solving linear systems, eigenvalue problem, singular value decom-
position. These algorithms are often given in the discrete form of successive iterations
x(k +1) = F(x(k)), where F is appropriate function. Such iterations are discrete-time (DT
systems). On the other hand, the iterations x(k + 1) = F(x(k)) can be considered as dy-
namical systems where the state variable x depends on the time k that takes discrete in-
teger values. A sequence of points {x(k)}‘,’; - satisfying x(k + 1) = F(x(k)) is called the
orbit of F at x(0). Nevertheless, most physical systems are dynamical continuous-time
(CT) systems. CT systems are described in terms of ordinary differential equations (ODE)
or partial differential equations (PDE) in the form x(7) = g(x(#)), where X means the time
derivative of x(#) and g is appropriate time-varying function. In general, continuous-time
algorithms and analog VLSI systems could be analyzed by means of time discretization
that could destroy the main characteristics of these systems. There are important differ-
ences between CT and DT systems. The problem of the existence and uniqueness is an
importantissue for CT systems, but not for DT systems. Further, CT systems are easier for
analysis that DT systems, because the orbits of many CT systems are continuous curves in
the state space, while the orbits of DT systems are sequences of points, difficult for analy-
sis. But, in spite of great difference, there is a great influence between the continuous-time
and discrete-time computation. Results obtained in the research of dynamical systems
can help in developing new iterations; and opposite, knowledge of derived iterations can
help in better understanding and even in defining new dynamical evolutions.

Generalized inverses are included an extensive variety of mathematical fields, for ex-
ample, matrix theory and operator theory. Many types of generalized inverses have vari-
ous applications such as linear estimation, differential and difference equations, Markov
chains, graphics, cryptography, coding theory, robotics, incomplete data recovery, sociol-
ogy, demography and many other fields. A special case of the Drazin inverse, called Group
inverse, has found application in characterizing the sensitivity of the stationary probabil-
ities to perturbations in the underlying transition probabilities. Finally, the group inverse
has recently proven to be fundamental in the analysis of Google’s PageRank search en-
gine. Generalized inverses play an important role in finding solutions of many stochastic
models, in particular Markov chains in discrete or continuous time and Markov renewal
processes [92]. The Drazin inverse has been successfully and extensively applied in dif-
ferent fields of science; for example, in finding closed form solutions of singular differen-
tial equations with matrix coefficients, in solving difference equations, in Markov chains,
multibody system dynamics as well as in finding solutions of various iterative methods.
The Moore-Penrose inverse has found a wide range of applications in many areas of sci-
ence and became a useful in finding least squares solutions of linear systems, in opti-
mization problems, in data analysis, in finding the solution of linear integral equations,
etc. Global overview of various applications of generalized inverses can be found in [11].
The intrinsic estimator (IE) has become a widely used tool for the analysis of age-period-
cohort (APC) data in sociology, demography, and other fields. It was recently observed in
[60] that the IE is a subtype of a larger class of estimators based on the Moore-Penrose
generalized inverse (MP estimators). Also, different estimators can lead to radically diver-
gent estimates of the true, unknown APC effects [60]. For more information of he history
of generalized inverses the reader is referred to two survey papers [12, 11].

On the other hand, time-varying problems appear more and more frequently in scien-



tific and engineering applications, such as circuit parameters in electronic circuits, aero-
dynamic coefficients in high-speed aircraft, and mechanical parameters in machinery
[318, 86]. Our intention was the attempt to overcome differences between the disciplines
of engineering and mathematics, in such a way that the book is interesting for engineers
and adequately rigorous for mathematicians.

More precisely, our main interest is computation of main problems in numerical lin-
ear algebra by means of dynamical system approach in both time-varying and
time-invariant case. Algorithms for their computation are developed and the
performance comparison of such algorithms is given. Several applications are
presented having in mind that gen- eralized inverses are very powerful tools and are
applicable in many branches of mathe- matics, technics and engineering. The most
frequent and important is the application in finding solution of many matrix equations
and system of linear equations. Besides nu- merical linear algebra, there are a lot of
other mathematical and technical disciplines in which generalized inverses play an
important role. Some of them are: estimation theory (regression), computing polar
decomposition, electrical circuits (networks) theory, automatic control theory, filtering,
difference equations, pattern recognition, image restoration.

So far, many classes of generalized inverses have been proposed and investigated. The
most popular are the Moore-Penrose inverse and the Drazin inverse.

Time-varying mathematical problems frequently appear in both scientific research
and practical applications. For example, main appearances of time-varying problems
are circuit parameters in electronic circuits, aerodynamic coefficients in high-speed air-
craft, mechanical parameters in machinery, robot motion planning, chaotic noise rejec-
tion for sensors, numerical online problems, time-varying nonlinear optimization prob-
lems, etc. In 2001 Zhang et al. developed a special class of recurrent neural networks
(RNNs), namely Zhang or zeroing neural networks (ZNNs) for solving efficiently time-
varying problems. Zeroing neural networks (ZNN) are able to perfectly track time-varying
solutions by exploiting the time derivative of time-varying parameters. As a consequence,
many researchers make progresses along this direction by proposing various kinds of
ZNN models for solving problems with different features. ZNN dynamical systems are
completely new, reliable and highly accurate for solving miscellaneous time-varying ma-
trix, vector or scalar problems. It differs from all other time-varying matrix methods in
its use of an error equation and initiated model based on ordinary differential equation
(ODE) that assures exponentially fast convergence. The ODE used in the model can be
transformed into discrete-time iterations by means of different finite difference equa-
tions. This gives a new look to classical iterative methods as well as mutual interaction
between continuous-time and discrete-time algorithms.

This book was primarily aimed to researchers in matrix theory, numerical linear alge-
bra, particularly in the theory of generalized inverses and its applications. Researchers in
recurrent neural networks and artificial intelligence can find useful material in this book.
Also, the presented material should be of interest for readers interested in numerical anal-
ysis and symbolic computation. In addition, the book can be very useful for researchers
interested in nonlinear programming. In general, dynamical systems models are defined
as continuous-time analogies of known nonlinear optimization algorithms, such as the
class of gradient-descent algorithms or various modifications of the Newton method for



solving nonlinear optimization problems. Both the time-varying and time-invariant en-
vironments in defining recurrent neural networks are considered. This book is aimed to
mathematics and engineering graduate students and researchers in the areas of numer-
ical linear algebra, optimization, dynamical systems, control systems, image processing.
It can also be used as a text or reference for many graduate courses or as a reference for
many courses in postgraduate levels in computer science, mathematics or in technical
faculties. The reader should be familiar with basic linear algebra, matrix theory, ordinary
differential equations, mathematical and functional analysis. Basic knowledge of the al-
gorithm theory, matrix theory and dynamical systems is recommended. Knowledge in
Matlab programming and in Simulink modeling, which is a graphical extension to Mat-
lab for modeling and simulation of systems, is desirable. We believe that the book should
be of use for many researchers, students in applied mathematics, statistics, engineering,
and many other scientific disciplines.

According to MSC classification, the topics considered in this book are classified as
follows:

- 15A09 Theory of matrix inversion and generalized inverses

- 15A10 Applications of generalized inverses

- 15A24 Matrix equations and identities

- 65F45 Numerical methods for matrix equations

- 68T07 Artificial neural networks

- 90C30 Nonlinear programming.

This book contains 10 chapters. In what follows, we present a short summary focusing
on the key concepts of each chapter.

Chapter 1 is a short introduction into basic topics from the matrix theory, optimiza-
tion theory and neural networks. Section 1.1 contains fundamental notions like Jordan
decomposition, singular value decomposition, idempotent matrices and projectors, the
trace function, Kronecker product and vectorization of matrices. Section 1.2 provides
definitions and properties of generalized inverses together with the most important ap-
plications of generalized inverses to linear systems solving. General information about
unconstrained optimization is included in section 1.3. In section 1.4 we refer to stability
and convergence properties of these networks according to Lyapunov theory. Section 1.5
is dedicated to a brief introduction to gradient neural networks (GNNs) and zeroing neu-
ral networks (ZNNs). Then a survey of some additional ZNN models is presented. Chapter
1 concludes with section 1.7, which describes importance of generalized inverses and dy-
namical systems.

Chapter 2 presents a robust analysis of GNNs. This chapter describes gradient-based
recurrent neural networks used for solving linear matrix equations and to compute differ-
ent generalized inverses of constant real or complex matrices. The focus of this chapter
is in solving matrix equations and in the computation of the matrix inverse and various
kinds of generalized inverses. Particularly, the first section 2.1 is a short review of the gra-
dient neural networks, especially those that are focused on the computation of the matrix
inverse and the Moore-Penrose generalized inverses and the second section 2.2 is devoted
to apply GNN dynamics for solving matrix equation AXB = D and its various particular
cases.
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The third chapter studies recurrent neural networks arising from gradient neural net-
works. Obtained dynamical systems do not follow true GNN design. The goal of this
section is to investigate modified dynamical systems and their applications in comput-
ing the Moore-Penrose and the Drazin inverse. Section 3.1 studies a specific GNN model
for computing outer inverses with prescribed range and null space. Subsequent section
present GNN models for approximating the Moore-Penrose, the Drazin inverse and vari-
ous expressions involving particular outer inverses. Convergence properties of described
GNN models are studied in details.

Chapter 4 investigates dynamical systems based on full rank factorization A = PQ of
the matrix A. This approach assumes usage of the input matrix A € C**” in conjunction
with the matrix G € C?*™, 0 < s < r. Two dynamic state equations and corresponding
gradient based RNNs for generating the class of outer inverses are proposed in [226].

The influence of non-linear activations of GNNs for the computation of the Drazin
inverse and W-weighted Drazin inverse are given in Chapter 5.

Conditions for existence, representations and computation of matrix generalized in-
verses are presented in Chapter 6 together with several algorithmic procedures tested on
a number of versatile numerical simulations. This chapter presents an interesting combi-
nation of an algebraic approach and dynamical system approach in computation of vari-
ous classes of generalized inverses with prescribed range and/or null space. Namely, the
algebraic approach gives some useful representations of generalized inverses, while the
dynamical systems are defined using obtained representations in order to solve required
matrix equations.

Improvements of the GNN dynamics based on the utilization of gradient descent opti-
mization methods is investigated in Chapter 7. Main goal is to solve the equation AXB =
D and apply its particular cases in computing generalized inverses in real time improving
the GNN standard model GNN(A, B, D). Our motivation is to improve the GNN(A, B, D)
and develop the novel gradient-based GNN (GGNN) design, termed as GGNN(A, B, D) uti-
lizing a novel type of dynamical system. The proposed GGNN model is defined evolving
the standard GNN dynamics along the gradient of the standard error matrix.

Chapter 8 investigates two continuous-time neural networks for computing general-
ized inverses of complex-valued matrices based on constrained quadratic optimization.
These neural networks are aimed to the Moore-Penrose inverse and outer inverses in con-
tinuous time. These neural networks are generated using the fact that outer inverses and
the Moore-Penrose inverse can be derived as the solution of appropriate, matrix valued,
convex quadratic programming problems. The first of them is applicable in the pseudoin-
verse computation and the second one is applicable in construction of outer inverses.

Symbolic computation of generalized inverses based on exact-free and symbolic solv-
ing of dynamic state equations is presented in Chapter 9. The proposed algorithms are
based on the exact solution of first order systems of differential equations which appear
in the dynamic state equation that define corresponding outer inverse. The algorithm is
applicable to matrices whose entries are integers, rational numbers as well as rational or
polynomial expressions.

The last Chapter 10 investigates improved dynamical systems based on modified of
modified and time-varying gain parameter. Hybridizations of GNN and ZNN design are
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presented in Section 10.2. For that purpose, Section 10.1 describe various ZNN models
aimed to solve the scalar, vector and matrix inversion problems. Section 10.3. considers
5NN and ZNN with variable gain parameter.

The authors are encouraging the readers for their comments, suggestions and correc-
tions.
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