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Preface

Recurrent Neural Networks (RNN) is one of the two broad types of artificial neural 
network that allow the output from some nodes to affect subsequent input to the same 
nodes. A continuous-tim e recurrent neural network (CTRNN) uses a system of ordinary 
differential equations to define effects on incom ing inputs on a neuron. We consider 
CTRNN dedicated to find zeros of equations or to m inimize nonlinear functions. Two 
im portant classes of CTRNNs are known: Gradient Neural Networks (GNN) and Zhang 
(or Zeroing) Neural Networks (ZNN). GNN is defined as the dynamical evolution along 
gradient-descent direction of the Frobenius norm  of the error matrix. Therefore, there 
is a strict relationship between the design of GNN dynamic systems and nonlinear opti­
m ization methods. The aim of this book is to collect the latest developments in the theory 
and com putation in num erical linear algebra by m eans of algorithms based on dynamical 
system approach. Main topics included in this book are investigation of GNN dynamical 
systems, their design and applications in com putation of the usual matrix inverse and 
generalized inverses, solving systems of linear m atrix and vector equations. The dynami­
cal system approach is a powerful tool for solving many kinds of matrix algebra problems 
because of:
(a) possibility to ensure a response within a predefined tim e-fram e in real-time applica­
tions,
(b) its parallel distributed nature,
(c) convenience of hardware im plem entation,
(d) global convergence without conditions,
(e) in addition, dynamical system approach is applicable to online com putation with 
time-varying matrices.

Our primary goal is the application of dynamical system approach in num erical lin­
ear algebra, especially in com putation of generalized inverses, and solving system of lin­
ear m atrix equations. Considered algorithms are aimed to both tim e-invariant and time- 
varying, com plex and real matrices. Continuous-tim e com putation has attracted a great 
scientific research. In particular, there is an increasing interest in continuous-tim e com ­
putation, where the states of the dynamical system evolve continuously. Many biological 
systems, som e control systems can be better described in the analog manner. The main 
motivation is the goal to derive efficient models for the variety of continuous dynamical 
systems which appear in the real world phenom ena.

All dynamical systems have discrete-tim e analogies, given in the form of appropri­
ate difference equations. Main correlations between the continuous and discrete-tim e 
algorithms are considered in this book. Many com putational problems (for example, 
structural analysis, electrical network analysis, weather forecasting) are based on matrix
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algorithms, such as solving linear systems, eigenvalue problem, singular value decom ­
position. These algorithms are often given in the discrete form of successive iterations 
x (k  +  1) =  F(x(k)),  where F  is appropriate function. Such iterations are d iscrete-tim e  (DT 
systems). On the other hand, the iterations x {k  +  1) =  F{x{k))  can be considered as dy­
nam ical systems where the state variab le  x  depends on the time к that takes discrete in­
teger values. A sequence of points {jc(fc)}^=_oo satisfying x {k  +  1) =  F{x[k))  is called the 
orbit of F  at x(0). Nevertheless, m ost physical systems are dynamical continuous-tim e 
(CT) systems. CT systems are described in terms of ordinary differential equations (ODE) 
or partial differential equations (PDE) in the form x{t)  =  g{x(t)),  where x  m eans the time 
derivative of x{t)  and g  is appropriate time-varying function. In general, continuous-tim e 
algorithms and analog VLSI systems could be analyzed by m eans of tim e discretization 
that could destroy the main characteristics of these systems. There are im portant differ­
ences between CT and DT systems. The problem  of the existence and uniqueness is an 
im portant issue for CT systems, but not for DT systems. Further, CT systems are easier for 
analysis that DT systems, because the orbits of many CT systems are continuous curves in 
the state space, while the orbits of DT systems are sequences of points, difficult for analy­
sis. But, in spite of great difference, there is a great influence between the continuous-tim e 
and discrete-tim e com putation. Results obtained in the research of dynamical systems 
can help in developing new iterations; and opposite, knowledge of derived iterations can 
help in better understanding and even in defining new dynamical evolutions.

Generalized inverses are included an extensive variety of m athem atical fields, for ex­
ample, matrix theory and operator theory. Many types of generalized inverses have vari­
ous applications such as linear estim ation, differential and difference equations, Markov 
chains, graphics, cryptography, coding theory, robotics, incom plete data recovery, sociol­
ogy, demography and many other fields. A special case of the Drazin inverse, called Group 
inverse, has found application in characterizing the sensitivity of the stationary probabil­
ities to perturbations in the underlying transition probabilities. Finally, the group inverse 
has recently proven to be fundamental in the analysis of Google’s PageRank search en ­
gine. Generalized inverses play an im portant role in finding solutions of many stochastic 
models, in particular Markov chains in discrete or continuous tim e and Markov renewal 
processes [92]. The Drazin inverse has been successfully and extensively applied in dif­
ferent fields of science; for example, in finding closed form solutions of singular differen­
tial equations with m atrix coefficients, in solving difference equations, in Markov chains, 
multibody system dynamics as well as in finding solutions of various iterative methods. 
The Moore-Penrose inverse has found a wide range of applications in many areas of sci­
ence and becam e a useful in finding least squares solutions of linear systems, in opti­
m ization problems, in data analysis, in finding the solution of linear integral equations, 
etc. Global overview of various applications of generalized inverses can be found in [11]. 
The intrinsic estim ator (IE) has becom e a widely used tool for the analysis of age-period- 
cohort (APC) data in sociology, demography, and other fields, ft was recently observed in 
[60] that the IE is a subtype of a larger class of estim ators based on the Moore-Penrose 
generalized inverse (MP estim ators). Also, different estimators can lead to radically diver­
gent estim ates of the true, unknown APC effects [60]. For more inform ation of he history 
of generalized inverses the reader is referred to two survey papers [12, 11].

On the other hand, time-varying problem s appear more and more frequently in scien­
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tific and engineering applications, such as circuit param eters in electronic circuits, aero­
dynamic coefficients in high-speed aircraft, and m echanical parameters in machinery7 
[318, 86]. Our intention was the attem pt to overcome differences between the disciplines 
of engineering and m athem atics, in such a way that the book is interesting for engineers 
and adequately rigorous for m athem aticians.

More precisely, our main interest is com putation of main problems in num erical lin­
ear algebra by m eans of dynamical system approach in both time-varying and 
tim e-invariant case. Algorithms for their com putation are developed and the 
perform ance com parison of such algorithms is given. Several applications are 
presented having in mind that gen- eralized inverses are very powerful tools and are 
applicable in many branches of m athe- matics, technics and engineering. The m ost 
frequent and im portant is the application in finding solution of many matrix equations 
and system of linear equations. Besides nu- m erical linear algebra, there are a lot of 
other m athem atical and technical disciplines in which generalized inverses play an 
im portant role. Some of them  are: estim ation theory (regression), com puting polar 
decom position, electrical circuits (networks) theory, autom atic control theory, filtering, 
difference equations, pattern recognition, image restoration.

So far, many classes of generalized inverses have been proposed and investigated. The 
m ost popular are the M oore-Penrose inverse and the Drazin inverse.

Time-varying m athem atical problems frequently appear in both scientific research 
and practical applications. For example, main appearances of time-varying problems 
are circuit param eters in electronic circuits, aerodynamic coefficients in high-speed air­
craft, m echanical param eters in machinery, robot m otion planning, chaotic noise re jec­
tion for sensors, num erical online problems, time-varying nonlinear optimization prob­
lems, etc. In 2001 Zhang et al. developed a special class of recurrent neural networks 
(RNNs), namely Zhang or zeroing neural networks (ZNNs) for solving efficiently tim e- 
varying problems. Zeroing neural networks (ZNN) are able to perfectly track time-varying 
solutions by exploiting the time derivative of time-varying parameters. As a consequence, 
many researchers make progresses along this direction by proposing various kinds of 
ZNN models for solving problem s with different features. ZNN dynamical systems are 
com pletely new, reliable and highly accurate for solving miscellaneous time-varying m a­
trix, vector or scalar problems. It differs from all other time-varying matrix m ethods in 
its use of an error equation and initiated model based on ordinary differential equation 
(ODE) that assures exponentially fast convergence. The ODE used in the model can be 
transformed into discrete-tim e iterations by m eans of different finite difference equa­
tions. This gives a new look to classical iterative m ethods as well as mutual interaction 
between continuous-tim e and discrete-tim e algorithms.

This book was primarily aimed to researchers in matrix theory, num erical linear alge­
bra, particularly in the theory of generalized inverses and its applications. Researchers in 
recurrent neural networks and artificial intelligence can find useful material in this book. 
Also, the presented material should be of interest for readers interested in num erical anal­
ysis and symbolic com putation. In addition, the book can be very useful for researchers 
interested in nonlinear programming. In general, dynamical systems models are defined 
as continuous-tim e analogies of known nonlinear optimization algorithms, such as the 
class of gradient-descent algorithms or various m odifications of the Newton m ethod for
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solving nonlinear optimization problems. Both the time-varying and tim e-invariant en­
vironments in defining recurrent neural networks are considered. This book is aimed to 
m athem atics and engineering graduate students and researchers in the areas of num er­
ical linear algebra, optimization, dynamical systems, control systems, image processing. 
It can also be used as a text or reference for many graduate courses or as a reference for 
many courses in postgraduate levels in com puter science, m athem atics or in technical 
faculties. The reader should be familiar with basic linear algebra, matrix theory, ordinary 
differential equations, m athem atical and functional analysis. Basic knowledge of the al­
gorithm theory, matrix theory and dynamical systems is recomm ended. Knowledge in 
M atlab  programming and in Sim u lin k  modeling, which is a graphical extension to M at- 
lab  for modeling and simulation of systems, is desirable. We believe that the book should 
he of use for many researchers, students in applied m athem atics, statistics, engineering, 
and many other scientific disciplines.

According to MSC classification, the topics considered in this book are classified as 
follows:

- 15A09 Theory of matrix inversion and generalized inverses
- 15A10 Applications of generalized inverses
- 15A24 Matrix equations and identities
- 65F45 Numerical methods for matrix equations
- 68T07 Artificial neural networks
- 90C30 Nonlinear programming.

This book contains 10 chapters. In what follows, we present a short summary focusing 
on the key concepts of each chapter.

Chapter 1 is a short introduction into basic topics from the m atrix theory, optimiza­
tion theory and neural networks. Section 1.1 contains fundamental notions like Jordan 
decomposition, singular value decomposition, idem potent m atrices and projectors, the 
trace function, Kronecker product and vectorization of matrices. Section 1.2 provides 
definitions and properties of generalized inverses together with the m ost im portant ap­
plications of generalized inverses to linear systems solving. General inform ation about 
unconstrained optimization is included in section 1.3. In section 1.4 we refer to stability 
and convergence properties of these networks according to Lyapunov theory. Section 1.5 
is dedicated to a brief introduction to gradient neural networks (GNNs) and zeroing neu­
ral networks (ZNNs). Then a survey of som e additional ZNN models is presented. Chapter 
1 concludes with section 1.7, which describes im portance of generalized inverses and dy­
nam ical systems.

Chapter 2 presents a robust analysis of GNNs. This chapter describes gradient-based 
recurrent neural networks used for solving linear matrix equations and to com pute differ­
ent generalized inverses of constant real or com plex matrices. The focus of this chapter 
is in solving matrix equations and in the com putation of the matrix inverse and various 
kinds of generalized inverses. Particularly, the first section 2.1 is a short review of the gra­
dient neural networks, especially those that are focused on the com putation of the matrix 
inverse and the Moore-Penrose generalized inverses and the second section 2.2 is devoted 
to apply GNN dynamics for solving matrix equation AXB =  D and its various particular
cases.
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The third chapter studies recurrent neural networks arising from gradient neural net­
works. Obtained dynamical systems do not follow true GNN design. The goal of this 
section is to investigate modified dynamical systems and their applications in com put­
ing the Moore-Penrose and the Drazin inverse. Section 3.1 studies a specific GNN model 
for com puting outer inverses with prescribed range and null space. Subsequent section 
present GNN models for approximating the Moore-Penrose, the Drazin inverse and vari­
ous expressions involving particular outer inverses. Convergence properties of described 
GNN models are studied in details.

Chapter 4 investigates dynamical systems based on full rank factorization A =  PQ  of 
the matrix A. This approach assumes usage of the input matrix A e C™x” in conjunction 
with the matrix G e C "xm, 0 <  s <  r. Two dynamic state equations and corresponding 
gradient based RNNs for generating the class of outer inverses are proposed in [226|.

The influence of non-linear activations of GNNs for the com putation of the Drazin 
inverse and VP-weigh ted Drazin inverse are given in Chapter 5.

Conditions for existence, representations and com putation of matrix generalized in ­
verses are presented in Chapter 6 together with several algorithmic procedures tested on 
a num ber of versatile num erical simulations. This chapter presents an interesting com bi­
nation of an algebraic approach and dynamical system approach in com putation o f vari­
ous classes of generalized inverses with prescribed range and/or null space. Namely, the 
algebraic approach gives some useful representations of generalized inverses, while the 
dynamical systems are defined using obtained representations in order to solve required 
matrix equations.

Improvements of the GNN dynamics based on the utilization of gradient descent opti­
m ization methods is investigated in Chapter 7. Main goal is to solve the equation AX В ~  
D  and apply its particular cases in computing generalized inverses in real tim e improving 
the GNN standard model GNN(A,B,D). Our motivation is to improve the GNN(A ,B,D )  
and develop the novel gradient-based GNN (GGNN) design, termed as GGNN(A, B, D) uti­
lizing a novel type of dynamical system. The proposed GGNN model is defined evolving 
the standard GNN dynamics along the gradient of the standard error matrix.

Chapter 8 investigates two continuous-tim e neural networks for com puting general­
ized inverses of complex-valued m atrices based on constrained quadratic optimization. 
These neural networks are aimed to the Moore-Penrose inverse and outer inverses in con ­
tinuous time. These neural networks are generated using the fact that outer inverses and 
the Moore-Penrose inverse can be derived as the solution of appropriate, matrix valued, 
convex quadratic programming problems. The first of them  is applicable in the pseudoin­
verse com putation and the second one is applicable in construction o f outer inverses.

Symbolic com putation of generalized inverses based on exact-free and symbolic solv­
ing of dynamic state equations is presented in Chapter 9. The proposed algorithms are 
based on the exact solution of first order systems of differential equations which appear 
in the dynamic state equation that define corresponding outer inverse. The algorithm is 
applicable to m atrices whose entries are integers, rational num bers as well as rational or 
polynomial expressions.

The last Chapter 10 investigates improved dynamical systems based on modified of 
modified and time-varying gain parameter. Hybridizations of GNN and ZNN design are
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presented in Section 10.2. For that purpose, Section 10.1 describe various ZNN models 
aimed to solve the scalar, vector and matrix inversion problems. Section 10.3. considers 
GNN and ZNN with variable gain parameter.

The authors are encouraging the readers for their com m ents, suggestions and correc­
tions.
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