Кулагина Т. А. Козин О. А. Матюшенко А. И.

ЭКОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ ТЕХНОСФЕРНЫХ ОБЪЕКТОВ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

Т. А. Кулагина, О. А. Козин, А. И. Матюшенко

ЭКОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ ТЕХНОСФЕРНЫХ ОБЪЕКТОВ

Издательство «Гротеск»

Красноярск – 2015

K40

Рецензенты:

Л. А. Тарасова, доктор технических наук, профессор кафедры «Процессы и аппараты химической технологии» Московского государственного Машиностроительного университета;

 $B.\ B.\ Москвичев,\$ доктор технических наук, профессор, директор СКТБ «Наука» КНЦ СО РАН

Кулагина, Т. А.

Экологическая безопасность техносферных объектов : монография / Т. А. Кулагина, О. А. Козин, А. И. Матюшенко. – Красноярск : Изд-во «Гротеск»; СФУ, 2015. – 323 с.

ISBN 978-5-86426-152-1

Освещены современные тенденции и актуальные задачи защиты окружающей среды в сфере обращения с отходами. Рассмотрены особенности отходов производства и потребления, управления их потоками, а также переработки отходов ядерно-энергетического цикла. Показана опасность отходов для окружающей среды. Изложены результаты исследований проблем в области обращения с особо опасными отходами — транспортировки, хранения, утилизации отходов и др. Приведены методики и примеры утилизации твердых отходов различного происхождения.

Для научных, инженерно-технических работников и проектировщиков, занимающихся проблемами гидромеханической обработки гетерогенных систем, ядерной энергетикой и техносферной безопасностью, а также для преподавателей, студентов и аспирантов соответствующих вузов.

554088

БИБЛИОТЕКА

ФГАОУ ВО

Сибирский федеральный университет

УДК 621:658; 532.28

ISBN 978-5-86426-152-1

© Сибирский федеральный университет, 2015

© Кулагина Т. А., 2015

© Козин О. А., 2015

© Матюшенко А. И., 2015

ОГЛАВЛЕНИЕ

Введение	3
Глава 1. Отходы производства и потребления	7
1.1. Источники образования, классификация и состав отходов	7
1.2. Основы законодательства по обращению с отходами	22
1.3. Нормирование воздействия отходов на окружающую среду	32
1.4. Инвентаризация отходов	48
1.5. Обращение с опасными отходами	61
1.6. Радиоактивные отходы	70
Глава 2. Ядерно-топливный цикл и окружающая среда	73
2.1. Виды радиоактивных превращений	75
2.2. Физические основы получения энергии на АЭС	83
2.2.1. Взаимодействия нейтронов с веществом	85
2.2.2. Особенности работы ядерных реакторов	87
Глава 3. Образование отходов в ядерно-топливном цикле	89
3.1. Структура ядерно-топливного цикла	89
3.2. Классификация отходов ядерно-топливного цикла	91
3.3. Добыча руды	96
3.4. Обогащение руды	97
3.5. Получение чистых соединений и тепловыделяющих	100
элементов	100
3.6. Работа атомных электростанций	102
3.6.1. Реактор типа ВВЭР	102
3.6.2. Реактор типа РБМК	107
3.6.3. Реактор на тяжелой воде	110
3.6.4. Реактор с шаровой засыпкой	112
3.6.5. Реакторы на быстрых нейтронах	113
3.6.6. Краткий сравнительный анализ различных типов	
реакторов	115
3.7. Переработка отработавшего ядерного топлива и обраще-	
ние с радиоактивными отходами	116
3.7.1. Краткое описание технологических процессов	116

	3.7.2. Образование твердых осадков и методы их извле-
	чения
	3.7.3. Очистка газовых выбросов радиохимических предприятий
	3.7.4. Оборудование для очистки газовых выбросов ра-
	диохимических предприятий
Глава 4.	Защита от ионизирующих излучений
	4.1. Принципы обращения с радиоактивными отходами
	4.2. Краткие сведения о действии ионизирующих излучений на живой организм
	4.3. Взаимодействие ионизирующих излучений с веществом
	4.3.1. Взаимодействие а-частиц с веществом
	4.3.2. Взаимодействие β-частиц с веществом
	4.3.3. Взаимодействие у-излучения с веществом
	4.3.4. Взаимодействие нейтронов с веществом
	4.4. Принципы защиты от ионизирующих излучений
	4.4.1. Принципы защиты при работе с закрытыми ис-
	точниками ионизирующих излучений
	4.4.2. Принципы защиты при работе с открытыми ис-
	точниками ионизирующих излучений
	4.5. Примеры расчетов защиты от ионизирующих излучений
	4.5.1. «Защита временем»
	4.5.2. «Защита расстоянием»
	4.5.3. «Защита экранами»
	4.5.3.1. Расчет защиты по слоям ослабления ус-
	ловного материала
	4.5.3.2. Метод конкурирующих линий для расче-
	тов защиты от немоноэнергетических ис-
	точников
Глава 5.	Основы кавитационной технологии
	5.1. Физические свойства воды
	 5.1.1. Структура молекулы воды
	 5.1.2. Диаграмма состояния
	5.1.3. Плотность
	5.1.4. Температура замерзания, кипения и наибольшей
	плотности
	5.2. Радиационные и оптические свойства воды
	5.2.1. Отражение и преломление солнечного излучения
	5.2.2. Проникающая в воду радиация

5.2.3. Оптические свойства воды	225 230
5.3.1. Классификация природных вод и их характери-	
стика	230
5.3.2. Способы изменения физико-химических свойств воды	234
5.3.3. Возникновение кавитации	235
5.3.4. Феноменологическая модель механолиза воды	241
5.3.5. Кинетика изменения физических свойств воды под действием кавитации	248
5.3.6. Гидродинамические воздействия на жидкости,	
растворы, золи, смеси и твердые границы потоков	253
5.4. Исследование физико-химических характеристик воды при	
различных временных режимах кавитации	27
Глава 6. Современные методы неразрушающего анализа деля-	
щихся материалов	278
6.1. Гамма-спектрометрия	278
6.2. Плотнометрия	284
6.2.1. Моноэнергетическая плотнометрия	285
6.2.2. Многоэнергетичная плотнометрия	286
6.2.3. Плотнометрия по краю поглощения	28
6.3. Нейтронный анализ	292
6.3.1. Природа нейтронного излучения	293
6.3.2. Основы регистрации нейтронов	303
6.3.3. Детекторы нейтронов	305
6.3.4. Камеры деления	310
6.3.5. Детекторы с покрытием из ¹⁰ В	312
ваключение	314
Библиографический список	317

ВВЕДЕНИЕ

Природное вещество, вовлекаемое в сферу потребления человека, лишь в ограниченном числе случаев может быть использовано без переработки. И зачастую чем больше энергии было приложено к природному веществу (механическое измельчение, термическая и химическая переработка и т. д.), тем более токсичны для окружающей природной среды образующиеся отходы.

Отходы относятся к материальным объектам, которые могут обладать высокой потенциальной опасностью для окружающей среды и здоровья человека. Однако общество не вполне осознает ее, и во многих странах порядок, регламентирующий деятельность в области обращения с отходами, отсутствует.

Федеральный закон «Об отходах производства и потребления» № 89-ФЗ от 24.06.1998 устанавливает следующее определение: «Отходы производства и потребления — остатки сырья, материалов, полуфабрикатов, иных изделий или продуктов, которые образовались в процессе производства или потребления, а также товары (продукция), утратившие свои потребительские свойства».

Отношения «человек — отходы» в России принято определять как «обращение с отходами». В зарубежной научно-технической литературе принят иной термин — «управление отходами» (waste management). Федеральный закон «Об отходах производства и потребления» дает также следующее определение: «Обращение с отходами — деятельность, в процессе которой образуются отходы, а также деятельность по сбору, использованию, обезвреживанию, транспортировке, размещению отходов».

Согласно этому закону основными принципами государственной политики в области обращения с отходами являются:

- охрана здоровья человека, поддержание или восстановление благоприятного состояния окружающей природной среды и сохранение биологического разнообразия;
- научно обоснованное сочетание экологических и экономических интересов общества в целях обеспечения его устойчивого развития;
- использование новейших научно-технических достижений в целях реализации малоотходных и безотходных технологий;
- комплексная переработка материально-сырьевых ресурсов в целях уменьшения количества отходов;
- использование методов экономического регулирования деятельности в области обращения с отходами в целях уменьшения количества отходов и вовлечения их в хозяйственный оборот;

- доступ, в соответствии с законодательством Российской Федерации, к информации в области обращения с отходами;

 • участие Российской Федерации в международном сотрудничестве
- в области обращения с отходами.

Первые два принципа являются главными, поскольку декларируют цель государственной политики как в области обращения с отходами, так и в области охраны окружающей среды и природопользования в целом, а также свидетельствуют о признании Российской Федерацией международных принципов, отраженных в ряде конвенций.

По оценкам Федерального государственного учреждения «Научно-исследовательский центр по проблемам управления ресурсосбережением и отходами», ежегодно в стране образуются: отходы промышленного производства – более 3 млрд. т; твердые бытовые отходы (ТБО) – более 40 млн. т; отходы в сточных водах промышленных предприятий и коммунального сектора (влажностью 95–96 %) – 80–100 млн. т; строительные отходы, включая отходы от сноса зданий и замусоренный грунт, – десятки миллионов тонн. Более 90 % промышленных отходов возникают при добыче и обогащении полезных ископаемых. В табл. В.1 приведены некоторые показатели образования и использования отходов.

В мире наблюдается устойчивый количественный рост отходов, связанный с ростом объема промышленного производства и уровня конечного потребления. При этом отходы потребления растут быстрее из-за опережающего роста продукции конечного потребления: в первую очередь бытовой, компьютерной и радиоэлектронной техники, предметов домашнего обихода, одежды, автомобилей и др.

Средний уровень использования отходов составляет примерно 26 %, из них промышленные отходы перерабатываются на 35 %, ТБО – на 3,5 %, остальные отходы практически не перерабатываются.

Любые отходы можно рассматривать в качестве вторичных материальных ресурсов (ВМР), поскольку они могут быть использованы в хозяйственных целях, частично или полностью замещая традиционные виды материальносырьевых и топливно-энергетических ресурсов. Причем главной особенностью таких ресурсов является их постоянная воспроизводимость в процессе материального производства, оказания услуг и конечного потребления.

Масштабы и степень переработки различных видов ВМР в Российской

Федерации значительно варьируются в зависимости от следующих факторов:

- ресурсной ценности отходов;
- экологической ситуации, обусловленной свойствами отходов как загрязнителей среды;
- конкретных экономических условий, определяющих рентабельность использования отходов в том или ином виде производства.

Таблица В.1 Наиболее распространенные виды многотоннажных отходов

Наименование отходов	Образование, млн. т	Уровень использования, %
Отходы добычи и обогащения	3200	35,2
Лом черных металлов	33,5	82,9
Золы и шлаки ТЭС	29,8	10,3
Галитовые отходы	29,4	14,0
Шлаки доменные	17,7	72,8
Древесные отходы	14,4	52,5
Фосфогипс	14,0	6,0
Шлаки сталеплавильные	7,4	41,8
Макулатура	3,8	31,7
Пиритные огарки	1,5	45,0
Щелоки сульфитные	0,95	68,4
Шины изношенные	1,1	10,0
Полимерные отходы	0,7	11,4
Текстильные отходы	0,37	50,4
Отработанная серная кислота	0,29	82,8
Стеклобой	0,6	34,2
Ртутьсодержащие отходы	0,004	45,0

В последние годы в России возрастает потребление электрической и тепловой энергии, вырабатываемой на ТЭС при сжигании твердого топлива. В результате возрастает количество твердых отходов ТЭС, складируемых в золоотвалах. Ущерб окружающей природной среде при эксплуатации этих сооружений наносится в результате совместного действия двух факторов – пыления сухой золы на надводных пляжах и фильтрации промышленных стоков через тело и основание дамб.

Красноярские теплостанции на 1 МВт установленной мощности производят 200 т в год золошлаковых отходов. После сжигания угля на предприятиях топливно-энергетического комплекса края в золоотвалах накапливается в среднем 1 млн. 200 тыс. т золы в год, которая в настоящее время практически не используется. В результате Красноярск, Ачинск, Канск, Минусинск, Зеленогорск, Шарыпово, Назарово и другие промышленные центры края окружены обширными золошлаковыми массивами. С каждым годом их площадь увеличивается, а число выделяемых ими в окружающую среду вредных химических веществ растет. И хотя зола канско-ачинских углей относится к IV классу опасности, тем не менее, накапливаясь в больших количествах, она оказывает негативное влияние на экологическую обстановку в регионе.

химических веществ растет. И хотя зола канско-ачинских углеи относится к IV классу опасности, тем не менее, накапливаясь в больших количествах, она оказывает негативное влияние на экологическую обстановку в регионе. Одним из такого рода воздействия является выпадение зольной пыли, выбрасываемой в воздух из труб ТЭС и выносимой с золоотвалов ветром на расстояние до нескольких километров. Например, в Красноярске есть места, где на 1 км² за сутки выпадает до 5 т пыли, преимущественно зольной.

Ситуация усугубляется еще и тем, что предприятия краевого топливно-энергетического комплекса (ТЭК) в основном расположены компактно. Их совокупное воздействие на окружающую среду представляет серьезную угрозу экологическому благополучию региона. Наиболее неблагоприятными в этом отношении являются Красноярск, Ачинск, Назарово и окружающие их территории.

В Федеральном законе «О государственных и муниципальных унитарных предприятиях» № 161-ФЗ от 14.11.2002 отходы вообще не выступают как объект правового регулирования: они не входят в состав оборотных средств предприятия, не являются видом имущества, не включаются в баланс предприятия. Однако отходы, которые могут быть использованы повторно, целесообразно относить к категории товарной продукции того предприятия, где они образуются.

В Красноярском крае в системе управления отходами отсутствует межотраслевое взаимодействие природопользователей, что зачастую связано с несогласованностью действий заинтересованных сторон. Так, организация, которая хочет избавиться от своих отходов, не ищет предприятие-переработчика, поскольку ей это невыгодно. В свою очередь предприятие-переработчик публикует объявления о своих услугах, оставляет необходимую информацию в местных органах власти, но ни на одном предприятии не образуется достаточного количества отходов для формирования транспортной партии, хотя и складировать отходы на территории организации до накопления необходимого количества чревато штрафными санкциями со стороны контролирующих организаций.

Для решения этой проблемы на кафедре «Инженерная экология и безопасность жизнедеятельности» Политехнического института Сибирского федерального университета разрабатывается структура межотраслевого взаимодействия в сфере обращения с отходами, которая позволит значительно сократить количество отходов, отправляемых на захоронение, создать единую сеть поставщиков и переработчиков, использовать отходы в качестве ВМР для производства различных видов продукции.

Авторы признательны профессорам Л. А. Тарасовой и В. В. Москвичеву за рецензирование данной книги и полезные замечания, позволившие улучшить качество представления материала, и, не претендуя на полноту изложения, с благодарностью примут критику и пожелания.

Глава 1. ОТХОДЫ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ

1.1. Источники образования, классификация и состав отходов

Ресурсы техносферы. Стремительный рост техники в качественном и количественном отношении ознаменовал собой так называемый период научно-технической революции. Считается, что за последние 50 лет человечество изобрело и создало технических средств гораздо больше, чем за всё предыдущее время.

Бурное развитие транспортных средств дало человеку возможность осваивать природу практически на всей территории Земли. Находясь в органической связи с природой, современное общество преобразует ее посредством техники, причем в таких масштабах, которые обусловили формирование искусственной среды обитания человека, всё более обретающей черты целостной оболочки, трактуемой как техносфера Земли.

Техносфера — это глобальная совокупность орудий, объектов, материальных процессов и продуктов общественного производства. Техносферу можно определить также как пространство геосфер Земли, находящееся под воздействием производственной деятельности человека и занятое ее продуктами. В XX в. человек раздвинул границы техносферы далеко за пределы биосферы: в ближний и дальний космос, в глубины земной коры, под дно океана, в субмолекулярный микромир. Вся планета оплетена густой сетью спутниковых орбит, авиационных трасс, океанских маршрутов, кабелей, линий электропередач, дорог, трубопроводов; значительная часть суши несет на себе многие миллионы различных сооружений. Околоземное пространство пронизано радиоволнами бесчисленных передатчиков. Всё это испускает, излучает, звучит, загрязняет все геосферы, создавая особую материальноэнергетическую оболочку планеты.

В техносфере можно выделить несколько материальных категорий:

- *орудия производства* инструменты, машины, механизмы, энергетические агрегаты, производственные комплексы, коммуникации, транспорт и т. д., а также люди-операторы, т. е. все действующие субъекты средств производства;
- ресурсы производства совокупность веществ, материалов, энергии и информации, необходимых для осуществления производства, т. е. вся ресурсная часть средств производства; к ней относятся и ресурсы человеческого труда как источника энергии и информации для производства;